Abstract

We present a fast algorithm for automatic extraction of a 3D cerebrovascular system from time-of-flight (TOF) magnetic resonance angiography (MRA) data. Blood vessels are separated from background tissues (fat, bones, or grey and white brain matter) by voxel-wise classification based on precise approximation of a multi-modal empirical marginal intensity distribution of the TOF-MRA data. The approximation involves a linear combination of discrete Gaussians (LCDG) with alternating signs, and we modify the conventional Expectation-Maximization (EM) algorithm to deal with the LCDG. To validate the accuracy of our algorithm, a special 3D geometrical phantom motivated by statistical analysis of the MRA-TOF data is designed. Experiments with both the phantom and 50 real data sets confirm high accuracy of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call