Abstract

Vascular reactivity represents the ability of the vascular smooth muscle to dilate or contract in response to changes in metabolic demand or vasoactive stimulus. More specifically, the cerebrovascular reactivity (CVR) has raised interest in several studies that point to its potential to predict stroke risk in patients with cerebrovascular disease. CVR mapping is typically performed using carbon dioxide (CO2) inhalation, breath-holding, or acetazolamide injection as vasoactive challenges, while magnetic resonance imaging (MRI) based on the blood oxygenation level-dependent (BOLD) contrast is acquired. However, such challenges of hypercapnia depend on additional equipment and cooperation of the subjects, limiting their applications, especially in elderly patients. Therefore, the objective of the present study was to map the CVR using resting-state MRI-BOLD, with no hypercapnic challenge, considering the variations in BOLD signal associated with variations in the arterial partial pressure of CO2. The CVR maps obtained with resting data showed a high correlation with those obtained by the conventional experiment with CO2 inhalation (r > 0.70). In addition, the CVR changes observed for the patients were consistent with their clinical reports. These results show that the mapping of CVR obtained with resting-state data may become a useful alternative in the detection of perfusion changes in clinical applications when the hypercapnic challenge is not feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call