Abstract

Atherosclerotic cerebrovascular disease leads to formation of lipid-laden plaques that can form emboli when ruptured causing blockage to cerebral vessels. The clinical manifestation of this event sequence is stroke; a leading cause of disability and death. In vivo MR imaging provides detailed image of vascular architecture for the carotid artery making it suitable for analysis of morphological features. Assessing the status of carotid arteries that supplies blood to the brain is of primary interest to such investigations. Reproducible quantification of carotid artery dimensions in MR images is essential for plaque analysis. Manual segmentation being the only method presently makes it time consuming and sensitive to inter and intra observer variability. This paper presents a deformable model for lumen and vessel wall segmentation of carotid artery from MR images. The major challenges of carotid artery segmentation are (a) low signal-to-noise ratio, (b) background intensity inhomogeneity and (c) indistinct inner and/or outer vessel wall. We propose a new, effective object-class uncertainty based deformable model with additional features tailored toward this specific application. Object-class uncertainty optimally utilizes MR intensity characteristics of various anatomic entities that enable the snake to avert leakage through fuzzy boundaries. To strengthen the deformable model for this application, some other properties are attributed to it in the form of (1) fully arc-based deformation using a Gaussian model to maximally exploit vessel wall smoothness, (2) construction of a forbidden region for outer-wall segmentation to reduce interferences by prominent lumen features and (3) arc-based landmark for efficient user interaction. The algorithm has been tested upon T1- and PD-weighted images. Measures of lumen area and vessel wall area are computed from segmented data of 10 patient MR images and their accuracy and reproducibility are examined. These results correspond exceptionally well with manual segmentation completed by radiology experts. Reproducibility of the proposed method is estimated for both intra- and inter-operator studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.