Abstract

CSF and regional brain concentrations of 42K, 22Na, 36Cl, and [14C]mannitol were determined 3-45 min after intravenous injection of the tracers in pentobarbital-anesthetized rats. Rapid influx of 36Cl and 22Na into ventricular CSF immediately established concentration gradients from CSF to brain extracellular fluid. The CSF contribution to brain uptake of tracers was greatest in periventricular brain regions, where brain 36Cl concentrations were up to ninefold higher than concentrations in regions distant from ventricular CSF. Acetazolamide (20 mg kg-1 i.p.), an inhibitor of CSF formation, decreased 36Cl uptake into CSF and into periventricular brain regions but not into frontal cortex. 36Cl uptake into brain was unidirectional for 10 min after intravenous injection, and, during that period, diffusion from ventricular CSF did not contribute to uptake in the frontal cortex. Therefore, cerebrovascular permeability coefficients could be calculated from tracer concentrations in frontal cortex at 10 min and equaled, in cm s-1, 13.5 X 10(-7) for 42K, 1.4 X 10(-7) for 22Na, 0.9 X 10(-7) for 36Cl, and 1.5 X 10(-7) for [14C]mannitol. The low cerebrovascular permeabilities to K, Na, and Cl, comparable to those of some cell membranes, and the permselectivity (K much greater than Na greater than Cl) suggest that a significant fraction of ion transport across cerebral capillaries is transcellular, i.e., across the endothelial cell membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.