Abstract

Background: Alzheimer's disease (AD) is the world's number one cerebral neurodegenerative disease. Up to 80% of all dementia cases are due to this disease. AD occurs not only because of impaired metabolism of amyloid beta (Aβ) and tau protein in cerebral tissue, but also in connection with specific disorders of cerebral blood supply, manifested in dyscirculatory angiopathy of Alzheimer's type (DAAT). Aims: The present research focuses on the clinical discovery of the sequence of development of dyscirculatory angiopathy of Alzheimer's type, cerebral atrophy, and dementia in patients with AD and their immediate family members. Methods: 99 patients were selected for the research, of whom: Test Group 1 93 (93.94%) suffered from various stages of AD and severity of dementia (age 34-79 (mean age 67): 32 (34.40%) men, 61 (65.59%) women). Test Group 2 6 (6.06%) children aged 8-12 with a high probability of inheriting AD. Each of them had a parent diagnosed with AD with mild dementia (TDR-1), and a grandparent diagnosed with AD with moderate (TDR-2) or severe dementia (TDR-3). Each child complained of fatigue, memory loss, difficulty in remembering, difficulty in concentrating, and frequent headaches. Results: Test Group 1. According to the severity of dementia and atrophic changes in the temporal lobes, the patients were subdivided: preclinical stage TDR-0 - 10 (10.75%) people, mild stage AD TDR-1 - 26 (27.96%) people, moderately severe stage AD TDR-2-40 (43.01%) people, severe AD TDR-3 - 17 (18.28%) people. We identified dyscirculatory angiopathy of Alzheimer's type in all patients, regardless of their AD stage. Test Group 2. There were no signs of dementia of cognitive disorders in any case. Initial involutive cerebral changes were detected in all 6 (100%) patients. Phenomena similar to DAAT were detected in all 6 (100%) patients. Conclusion: Cerebrovascular changes manifested by dyscirculatory angiopathy of Alzheimer's type, regardless of the stage of the disease, are observed in all patients with AD, as well as in all their young offspring. These changes affect amyloid beta metabolism in the brain and contribute to its deposition and accumulation in cerebral tissue, which leads to neurodegeneration and AD development. The data obtained indicate that dyscirculatory angiopathy of Alzheimer's type is primary and, moreover, possibly congenital in AD development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call