Abstract
After hypoxic brain injury, maintaining blood pressure within the limits of cerebral blood flow autoregulation is critical to preventing secondary brain injury. Little is known about the effects of prolonged hypothermia or rewarming on autoregulation after cardiac arrest. We hypothesized that rewarming would shift the lower limit of autoregulation (LLA), that this shift would be detected by indices derived from near-infrared spectroscopy (NIRS), and that rewarming would impair autoregulation during hypertension. Anesthetized neonatal swine underwent sham surgery or hypoxic-asphyxic cardiac arrest, followed by 2 h of normothermia and 20 h of hypothermia, with or without rewarming. Piglets were further divided into cohorts for cortical laser-Doppler flow (LDF) measurements during induced hypotension or hypertension. We also tested whether indices derived from NIRS could identify the LDF-derived LLA. The LLA did not differ significantly among groups with sham surgery and hypothermia (29 ± 8 mmHg), sham surgery and rewarming (34 ± 7 mmHg), arrest and hypothermia (29 ± 10 mmHg), and arrest and rewarming (38 ± 11 mmHg). The LLA was not affected by arrest (P = 0.60), temperature (P = 0.08), or interaction between arrest and temperature (P = 0.73). The NIRS-derived indices detected the LLA accurately, with the area under the receiver-operator characteristic curves of 0.81-0.96 among groups. In groups subjected to arrest and hypothermia, with or without rewarming, the slope of LDF relative to cerebral perfusion pressure during hypertension was not significantly different from zero (P > 0.10). In conclusion, rewarming did not shift the LLA during hypotension or affect autoregulation during hypertension after asphyxic cardiac arrest. The NIRS-derived autoregulation indices identified the LLA accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.