Abstract

Classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is caused by a deficiency of tripeptidyl-peptidase-1. In 2017, the first CLN2 enzyme replacement therapy (ERT) cerliponase alfa (Brineura) was approved by the FDA and EMA. The CLN2 disease clinical rating scale (CLN2 CRS) was developed to monitor loss of motor function, language and vision as well as frequency of generalised tonic clonic seizures. Using CLN2 CRS in an open label clinical trial it was shown that Brineura slowed down the progression of CLN2 symptoms. Neurofilament light chain (NfL) is a protein highly expressed in myelinated axons. An increase of cerebrospinal fluid (CSF) and blood NfL is found in a variety of neuroinflammatory, neurodegenerative, traumatic, and cerebrovascular diseases. We analysed CSF NfL in CLN2 patients treated with Brineura to establish whether it can be used as a possible biomarker of response to therapy. Newly diagnosed patients had CSF samples collected and analysed at first treatment dose and up to 12 weeks post-treatment to look at acute changes. Patients on a compassionate use programme who were already receiving ERT for approximately 1yr had CSF samples collected and NfL analysed over the following 1.3 years (2.3 years post-initiation of ERT) to look at long-term changes. All newly diagnosed patients we investigated with classical late infantile phenotype had high NfL levels >2000 pg/ml at start of treatment. No significant change was observed in NfL up to 12 weeks post-treatment. After one year of ERT, two out of six patients still had high NfL levels, but all patients showed a continued decrease, and all had low NfL levels after two years on ERT. NfL levels appear to correspond and predict improved clinical status of patients on ERT and could be useful as a biomarker to monitor neurodegeneration and verify disease modification in CLN2 patients on ERT.

Highlights

  • Classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is the second most common type of neuronal ceroid lipofuscinosis (NCL), a group of inherited progressive neurodegenerative diseases in children.[1]

  • CLN2 disease is caused by mutations in the tripeptidyl peptidase 1 (TPP1) gene, which result in either loss or deficiency of the TPP1 lysosomal hydrolase

  • Neurofilament light chain (NfL) had first been suggested as a biomarker for future treatment-monitoring of CLN3 disease as elevated cerebrospinal fluid (CSF) (2096 Æ 1202 pg/ml) has been observed in patients compared to controls (345 Æ 610 pg/ml).[9]

Read more

Summary

Introduction

Classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is the second most common type of neuronal ceroid lipofuscinosis (NCL), a group of inherited progressive neurodegenerative diseases in children.[1] The classical form of CLN2 disease presents in most patients with early language delay followed by onset of seizures at around three years of age, ataxia, motor and cognitive decline, loss of vision, with death by early adolescence. Atypical forms of CLN2 exist, where patients may present at an older age and with much slower pace of neurodegeneration.[2] It is estimated that atypical patients constitute 10-20% of the total CLN2 patient cohort, this may vary in different populations. In the UK, 5-6 children are diagnosed with CLN2 disease each year, and it is estimated that 30-50 children are currently living with the disease.[3] CLN2 disease is caused by mutations in the tripeptidyl peptidase 1 (TPP1) gene, which result in either loss or deficiency of the TPP1 lysosomal hydrolase. TPP1 deficiency leads to the characteristic autofluorescent neuronal ceroid lipofuscin accumulation of NCL.[4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call