Abstract

Leptin suppresses appetite by modulating the expression of hypothalamic neuropeptides including proopiomelanocortin (POMC) and agouti-related peptide (AgRP). Yet during pregnancy, caloric consumption increases despite elevated plasma leptin levels. To investigate this paradox, we measured leptin and soluble leptin receptor in plasma and leptin, POMC, and AgRP in cerebrospinal fluid (CSF) from 21 fasting pregnant women before delivery by cesarean section at a university hospital and from 14 fasting nonpregnant women. Prepregnancy body mass index was 24.6 ± 1.1 (SE) vs. 31.3 ± 1.3 at term vs. 26.5 ± 1.6 kg/m(2) in controls. Plasma leptin (32.9 ± 4.6 vs. 16.7 ± 3.0 ng/ml) and soluble leptin receptor (30.9 ± 2.3 vs. 22.1 ± 1.4 ng/ml) levels were significantly higher in pregnant women. However, mean CSF leptin did not differ between the two groups (283 ± 34 vs. 311 ± 32 pg/ml), consistent with a relative decrease in leptin transport into CSF during pregnancy. Accordingly, the CSF/plasma leptin percentage was 1.0 ± 0.01% in pregnant subjects vs. 2.1 ± 0.2% in controls (P < 0.0001). Mean CSF AgRP was significantly higher in pregnant subjects (32.3 ± 2.7 vs. 23.5 ± 2.5 pg/ml; P = 0.03). Mean CSF POMC was not significantly different in pregnant subjects (200 ± 13.6 vs. 229 ± 17.3 fmol/ml; P = 0.190). However, the mean AgRP/POMC ratio was significantly higher among pregnant women (P = 0.003), consistent with an overall decrease in melanocortin tone favoring increased food intake during pregnancy. These data demonstrate that despite peripheral hyperleptinemia, positive energy balance is achieved during pregnancy by a relative decrease in central leptin concentrations and resistance to leptin's effects on target neuropeptides that regulate energy balance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call