Abstract

BackgroundAlthough inflammation in the central nervous system is responsible for multiple neurological diseases, the lack of appropriate biomarkers makes it difficult to evaluate inflammatory activities in these diseases. Therefore, a new biomarker reflecting neuroinflammation is required for accurate diagnosis, appropriate therapy, and comprehension of pathogenesis of these neurological disorders. We previously reported that the cerebrospinal fluid (CSF) concentration of lateral olfactory tract usher substance (LOTUS), which promotes axonal growth as a Nogo receptor 1 antagonist, negatively correlates with disease activity in multiple sclerosis, suggesting that variation in LOTUS reflects the inflammatory activities and is a useful biomarker to evaluate the disease activity. To extend this observation, we analyzed the variation of LOTUS in the CSF of patients with bacterial and viral meningitis, which are the most common neuroinflammatory diseases.MethodsCSF samples were retrospectively obtained from patients with meningitis (n = 40), who were followed up by CSF study at least twice, and from healthy controls (n = 27). Patients were divided into bacterial (n = 14) and viral meningitis (n = 18) after exclusion of eight patients according to the criteria of this study. LOTUS concentrations, total protein levels, and CSF cell counts in the acute and recovery phases were analyzed chronologically. We also used lipopolysaccharide-injected mice as a model of neuroinflammation to evaluate LOTUS mRNA and protein expression in the brain.ResultsRegardless of whether meningitis was viral or bacterial, LOTUS concentrations in the CSF of patients in acute phase were lower than those of healthy controls. As the patients recovered from meningitis, LOTUS levels in the CSF returned to the normal range. Lipopolysaccharide-injected mice also exhibited reduced LOTUS mRNA and protein expression in the brain.ConclusionsCSF levels of LOTUS correlated inversely with disease activity in both bacterial and viral meningitis, as well as in multiple sclerosis, because neuroinflammation downregulated LOTUS expression. Our data strongly suggest that variation of CSF LOTUS is associated with neuroinflammation and is useful as a biomarker for a broader range of neuroinflammatory diseases.

Highlights

  • Inflammation in the central nervous system is responsible for multiple neurological diseases, the lack of appropriate biomarkers makes it difficult to evaluate inflammatory activities in these diseases

  • Our data strongly suggest that variation of cerebrospinal fluid (CSF) lateral olfactory tract usher substance (LOTUS) is associated with neuroinflammation and is useful as a biomarker for a broader range of neuroinflammatory diseases

  • We showed that LOTUS in the human CSF closely associated with the disease activity of multiple sclerosis (MS), a representative neuroinflammatory disease accompanied by neurodegeneration [9,10,11]

Read more

Summary

Introduction

Inflammation in the central nervous system is responsible for multiple neurological diseases, the lack of appropriate biomarkers makes it difficult to evaluate inflammatory activities in these diseases. We previously reported that the cerebrospinal fluid (CSF) concentration of lateral olfactory tract usher substance (LOTUS), which promotes axonal growth as a Nogo receptor 1 antagonist, negatively correlates with disease activity in multiple sclerosis, suggesting that variation in LOTUS reflects the inflammatory activities and is a useful biomarker to evaluate the disease activity. To complement CSF biomarkers, imaging biomarkers have recently been developed, including magnetic resonance imaging with ultra-small superparamagnetic iron oxide, a novel contrast agent, and positron-emission tomography using [11C] (R)-PK11195 ligand These new markers play an important role in evaluation of the activities of neuroinflammatory diseases, including MS [3, 5]. The utility of currently available biomarkers for evaluating neuroinflammation is unsatisfactory, creating a demand for new and practical biomarkers

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call