Abstract

Changes in cerebrospinal fluid (CSF) dynamics can have adverse effects on neuronal function. We hypothesized that patients with hypoxic-ischemic brain injury (HIBI) showing poor neurological outcomes after cardiac arrest (CA) would exhibit changes in CSF dynamics, leading to abnormalities in gas diffusion within the CSF. Therefore, we investigated the prognostic value of the CSF partial pressure of carbon dioxide (PcsfCO2) in CA survivors who underwent targeted temperature management (TTM). We retrospectively analyzed the 6-month neurological outcomes, CSF, and arterial blood gas parameters of 67 CA survivors. Patients were divided into good and poor neurological outcome groups, and the predictive value of PcsfCO2 for poor neurological outcomes was assessed using receiver operating characteristic curve analysis. Among all patients, 39 (58.2%) had poor neurological outcomes. Significant differences in PcsfCO2 levels between the groups were observed, with lower PcsfCO2 levels on Day 1 showing the highest predictive value at a cutoff of 30 mmHg (area under the curve, sensitivity, and specificity were 0.823, 77.8%, and 79.0%, respectively). These results suggest that PcsfCO2 might serve not only as a unique marker for the severity of hypoxic-ischemic brain injury (HIBI), independent of extracorporeal CO2 levels, but also as an objective indicator of changes in CSF dynamics. This study highlights the potential prognostic and diagnostic utility of PcsfCO2 during TTM in CA survivors, emphasizing its importance in evaluating CSF dynamics and neurological recovery post CA. However, larger multicenter studies are warranted to address potential limitations associated with sample size and outcome assessment methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call