Abstract

BackgroundPrion disease is neurodegenerative disease that is typically fatal within months of first symptoms. Clinical trials in this rapidly declining symptomatic patient population have proven challenging. Individuals at high lifetime risk for genetic prion disease can be identified decades before symptom onset and provide an opportunity for early therapeutic intervention. However, randomizing pre-symptomatic carriers to a clinical endpoint is not numerically feasible. We therefore launched a cohort study in pre-symptomatic genetic prion disease mutation carriers and controls with the goal of evaluating biomarker endpoints that may enable informative trials in this population.MethodsWe collected cerebrospinal fluid (CSF) and blood from pre-symptomatic individuals with prion protein gene (PRNP) mutations (N = 27) and matched controls (N = 16), in a cohort study at Massachusetts General Hospital. We quantified total prion protein (PrP) and real-time quaking-induced conversion (RT-QuIC) prion seeding activity in CSF and neuronal damage markers total tau (T-tau) and neurofilament light chain (NfL) in CSF and plasma. We compared these markers cross-sectionally, evaluated short-term test-retest reliability over 2–4 months, and conducted a pilot longitudinal study over 10–20 months.ResultsCSF PrP levels were stable on test-retest with a mean coefficient of variation of 7% for both over 2–4 months in N = 29 participants and over 10–20 months in N = 10 participants. RT-QuIC was negative in 22/23 mutation carriers. The sole individual with positive RT-QuIC seeding activity at two study visits had steady CSF PrP levels and slightly increased tau and NfL concentrations compared with the others, though still within the normal range, and remained asymptomatic 1 year later. T-tau and NfL showed no significant differences between mutation carriers and controls in either CSF or plasma.ConclusionsCSF PrP will be interpretable as a pharmacodynamic readout for PrP-lowering therapeutics in pre-symptomatic individuals and may serve as an informative surrogate biomarker in this population. In contrast, markers of prion seeding activity and neuronal damage do not reliably cross-sectionally distinguish mutation carriers from controls. Thus, as PrP-lowering therapeutics for prion disease advance, “secondary prevention” based on prodromal pathology may prove challenging; instead, “primary prevention” trials appear to offer a tractable paradigm for trials in pre-symptomatic individuals.

Highlights

  • Prion disease is neurodegenerative disease that is typically fatal within months of first symptoms

  • cerebrospinal fluid (CSF) prion protein (PrP) will be interpretable as a pharmacodynamic readout for PrP-lowering therapeutics in presymptomatic individuals and may serve as an informative surrogate biomarker in this population

  • As PrP-lowering therapeutics for prion disease advance, “secondary prevention” based on prodromal pathology may prove challenging; instead, “primary prevention” trials appear to offer a tractable paradigm for trials in pre-symptomatic individuals

Read more

Summary

Introduction

Prion disease is neurodegenerative disease that is typically fatal within months of first symptoms Clinical trials in this rapidly declining symptomatic patient population have proven challenging. Individuals at high lifetime risk for genetic prion disease can be identified decades before symptom onset and provide an opportunity for early therapeutic intervention. We launched a cohort study in pre-symptomatic genetic prion disease mutation carriers and controls with the goal of evaluating biomarker endpoints that may enable informative trials in this population. The rapid progression of prion disease, which is typically fatal in under a year [4], presents a challenge for drug development, as symptomatic patients may be profoundly debilitated by the time of diagnosis and enrollment [5, 6]. Prion “seeding activity” in CSF measured by real-time quaking-induced conversion (RT-QuIC) is a candidate with excellent diagnostic sensitivity and specificity in symptomatic prion disease [24]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call