Abstract

Traumatic brain injury (TBI) is a serious public health problem that endangers human health and is divided into primary and secondary injuries. Previous work has confirmed that changes in cerebral blood flow (CBF) are related to the progression of secondary injury, although clinical studies have shown that CBF monitoring cannot fully and accurately evaluate disease progression. These studies have almost ignored the monitoring of venous blood flow; however, as an outflow channel of the cerebral circulation, it warrants discussion. To explore the regulation of venous blood flow after TBI, the present study established TBI mouse models of different severities, observed changes in cerebral venous blood flow by laser speckle flow imaging, and recorded intracranial pressure (ICP) after brain injury to evaluate the correlation between venous blood flow and ICP. Behavioral and histopathological assessments were performed after the intervention. The results showed that there was a significant negative correlation between ICP and venous blood flow (r = −0.795, P < 0.01), and both recovered to varying degrees in the later stages of observation. The blood flow changes in regional microvessels were similar to those in venous, and the expression of angiogenesis proteins around the impact area was significantly increased. In conclusion, this study based on the TBI mouse model, recorded the changes in venous blood flow and ICP and revealed that venous blood flow can be used as an indicator of the progression of secondary brain injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call