Abstract
Oxy- (HbO2) and deoxy- (HHb) haemoglobin signals measured by near infrared (NIR) spectroscopy over the human frontal lobes frequently contain respiratory and low frequency oscillations (LFOs). It has been suggested previously that venous oxygen saturation (SvO2) can be calculated from these respiratory oscillations. In this paper, we investigated the use of a Fourier transform based algorithm to calculate an oxygen saturation measure known as S(osc)O2 which may be a close estimate of the underlying SvO2. S(osc)O2 was calculated using three different frequency ranges, (1) respiratory oscillations only, (2) LFOs only, and (3) both respiratory oscillations and LFOs. At each frequency range S(osc)O2 was calculated using either (1) the modified Beer-Lambert law (MBL) or (2) spatially resolved spectroscopy (SRS). In total six different measurements of S(osc)O2 were investigated here. Experiments were performed in six adult ventilated patients with traumatic brain injury. The patients' inspired oxygen fraction (FiO2) was raised in two hyperoxic phases. The calculated S(osc)O2 values were compared with other cerebral oxygenation measures including an intraparenchymal catheter based brain tissue oxygen tension (PbrO2) and the NIR based tissue oxygenation index (TOI). It was found that the S(osc)O2 calculated using the combined respiratory and LFO frequency range and the SRS method resulted in the highest detection rates of hyperoxic changes. This measure of S(osc)O2 may provide a viable, continuous, non invasive, bedside measure of cerebral venous oxygen saturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.