Abstract

Introduction: Breastfeeding is a fundamental biological function in mammals, allowing the progeny to develop in a physiological way. A physical and emotional dialog between mothers and offspring during breastfeeding has been described as part of the attachment relationship, and a synchronicity between maternal and neonatal brains can be hypothesized. This study aimed to assess if neonatal and maternal cortical areas activated during breastfeeding are functionally synchronized since the second day of life. Materials and Methods: Twenty mothers and their term newborns were enrolled. Cortical activation during breastfeeding was identified by multichannel near-infrared spectroscopy, which detects changes in haemoglobin concentration from multiple cortical regions. Functional activity was simultaneously detected (hyperscanning) in mothers and newborns' frontal and motor/primary somatosensory cortical areas during the first 5 minutes of breastfeeding. Cluster analysis and Student's t test were used to detect oxygenated haemoglobin increase, as cortical activation estimate. Wavelet transform coherence (WTC) analysis was used to identify a possible synchronization between maternal and neonatal activated cortical regions. Results: Mothers showed an activation of the central motor/primary somatosensory cortex, above the sagittal fissure. In newborns, the bilateral frontal cortex was activated. WTC analysis revealed two different cyclical synchronizations between mothers and infants' activated cortical regions. Conclusions: Such evidence may reflect a very early common sharing of experiences, possibly associated with reciprocal dynamic motor adjustments, hormonal coregulation, and somatic stimulations and sensations. The observed cyclical neural synchronization, between the mother and her newborn's cortex during breastfeeding, may play an important role in promoting their bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.