Abstract

SummaryCerebral micro‐bleedings are small chronic brain hemorrhages caused by structural abnormalities of the small vessels. CMBs can be found from individuals with stroke at memory clinics and even healthy elderly people. CMBs indicate hemorrhage‐prone pathological states. Research shows that CMBs are associated with an increased risk of future ischemic stroke, intra‐cerebral hemorrhage (ICH), dementia, and death. Considering that CMBs severely influence people's life, it is necessary to identify the CMBs in an early stage to prevent from further deterioration and to help people live a healthy life. In this paper, we proposed using CNN with stochastic pooling for the CMB detection. CNN has good performance in image and video recognition, recommender system, and nature language processing. Based on the collected subject, the experiment result shows that the six‐convolution layer and three fully‐connected layer CNN, nine‐layers in total, achieved sensitivity, specificity, accuracy, and precision as 97.22%, and 97.35%, 97.28%, and 97.35% in average of ten runs, which shows better performance than five state‐of‐the‐art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.