Abstract

Mammalian genomes are burdened with a large heterogeneous group of endogenous replication defective retroviruses (retrotransposons). Previously, we identified a transcript resembling a virus-like 30S ( VL30) retrotransposon increasing in mouse brain following transient cerebral ischemia. Paradoxically, this non-coding RNA was found bound to polyribosomes. Further analysis revealed that multiple retrotransposon species ( BVL-1-like and mVL30-1-like) were bound to polyribosomes and induced by ischemia. These VL30 transcripts remained associated with polyribosomes in the presence of 0.5 M KCl, indicating that VL30 mRNA was tightly associated with ribosomal subunits. Furthermore, the profile of BVL-1 distribution on polyribosomal profiles was distinct from those of translated and translationally repressed mRNA. Consistent with expectations, 5.0 kb VL30 transcripts were detected in ischemic brain with a temporal pattern of expression that was distinct from c- fos. Expression of VL30 was localized in neurons using a combination of in situ hybridization and immunocytochemistry. 3′-RACE-PCR experiments yielded two unique sequences ( VL30x-1 and VL30x-2) that were homologous to known VL30 genes. Phylogenetic analysis of VL30 promoter sequence (U3 region) resulted in the identification of two large VL30 subgroups. VL30x-1 and VL30x-2 were closely related and classified in a group that was distinct from the well-characterized VL30 genes BVL-1 and mVL30-1. The promoter regions of VL30x-1 and VL30x-2 did not possess the consensus sequences for either hypoxia or anoxia response elements, suggesting an alternative mechanism for induction. This is the first report that demonstrates ischemia-induced, neuronal expression of unique VL30 retrotransposons in mouse brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.