Abstract

Stroke mortality has declined over recent decades, prompting a demand for the development of effective rehabilitative therapies for stroke survivors. This effort has been facilitated by significant progress in replicating the behavioral and neuropathological changes of authentic human cerebral ischemia using relevant animal models. Since the rodent model of middle cerebral artery occlusion mimics several motor abnormalities seen in clinical cerebral ischemia, we have utilized this model to investigate treatment strategies for stroke. The present study explored the potential benefits of neural transplantation of fetal rat striatal cells or human neurons derived from a clonal embryonal carcinoma cell line to correct the abnormalities associated with cerebral ischemia. We report here that ischemia-induced behavioral dysfunctions were ameliorated by the neural grafts as early as 1 month post-transplantation. Of note, transplantation of human neurons induced a significantly more robust recovery than fetal rat striatal grafts. Thus, the logistical and ethical concerns about the use of fetal striatal cells for transplantation therapy can be eliminated by exploiting cell line-derived human neurons as alternative graft sources. Transplantation of human neurons has a therapeutic potential for treatment of behavioral deficits associated with cerebral ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.