Abstract

The response of central and cerebral hemodynamics to a stepwise increase in dynamic exercise until failure was studied in healthy young men. Each subject was examined using Doppler ultrasound assessment of blood flow in the middle cerebral artery (MCA), Doppler echocardiography, and spiroergometry. Hemodynamic parameters were recorded before the study and during the last several seconds of each step of the dynamic exercise. The central hemodynamic and energy exchange parameters exhibited typical changes with increasing exercise intensity. The peak systolic blood flow velocity in the MCA increased only in response to exercise of a moderate intensity (1 W/kg body weight, 45% of the maximal oxygen uptake); the further increase in exercise intensity did not affect the blood flow velocity. The cerebral vascular resistance index at the last step of the exercise was 24% higher than at rest. The increase in the MCA resistance index during the exercise was moderately correlated with the increase in the pulse pressure and systolic blood pressure, whereas the increase in blood pressure was not related to the increase in the peak systolic blood flow velocity in the MCA in response to an exercise intensity at which the oxygen uptake was higher than 45% of its maximal value. The differences between the responses of central and cerebral hemodynamics to the stepwise increase in exercise intensity reflect the phenomenon of cerebral hemodynamic autoregulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call