Abstract
BackgroundMost patients with sepsis develop potentially irreversible cerebral dysfunctions. It is yet not clear whether cerebral haemodynamics are altered in these sepsis patients at all, and to what extent. We hypothesized that cerebral haemodynamics and carbon dioxide reactivity would be impaired in patients with sepsis syndrome and pathological electroencephalogram patterns.MethodsAfter approval of the institutional ethics committee, 10 mechanically ventilated patients with sepsis syndrome and pathological electroencephalogram patterns underwent measurements of cerebral blood flow and jugular venous oxygen saturation before and after reduction of the arterial carbon dioxide partial pressure by 0.93 ± 0.7 kPa iu by ypervent ilation. The cerebral capillary closing pressure was determined from transcranial Doppler measurements of the arterial blood flow of the middle cerebral artery and the arterial pressure curve. A t test for matched pairs was used for statistical analysis (P < 0.05).ResultsDuring stable mean arterial pressure and cardiac index, reduction of the arterial carbon dioxide partial pressure led to a significant increase of the capillary closing pressure from 25 ± 11 mmHg to 39 ± 15 mmHg (P < 0.001), with a consecutive decrease of blood flow velocity in the middle cerebral artery of 21.8 ± 4.8%/kPa (P < 0.001), of cerebral blood flow from 64 ± 29 ml/100 g/min to 39 ± 15 ml/100 g/min (P < 0.001) and of jugular venous oxygen saturation from 75 ± 8% to 67 ± 14% (P < 0.01).ConclusionIn contrast to other experimental and clinical data, we observed no pathological findings in the investigated parameters of cerebral perfusion and oxygenation.
Highlights
Most patients with sepsis develop potentially irreversible cerebral dysfunctions
During stable mean arterial pressure and cardiac index, reduction of the arterial carbon dioxide partial pressure led to a significant increase of the capillary closing pressure from 25 ± 11 mmHg to 39 ± 15 mmHg (P < 0.001), with a consecutive decrease of blood flow velocity in the middle cerebral artery of 21.8 ± 4.8%/kPa (P < 0.001), of cerebral blood flow from 64 ± 29 ml/100 g/min to 39 ± 15 ml/100 g/min (P < 0.001) and of jugular venous oxygen saturation from 75 ± 8% to 67 ± 14% (P < 0.01)
In contrast to other experimental and clinical data, we observed no pathological findings in the investigated parameters of cerebral perfusion and oxygenation
Summary
Most patients with sepsis develop potentially irreversible cerebral dysfunctions. It is yet not clear whether cerebral haemodynamics are altered in these sepsis patients at all, and to what extent. We hypothesized that cerebral haemodynamics and carbon dioxide reactivity would be impaired in patients with sepsis syndrome and pathological electroencephalogram patterns. Up to 71% of patients with sepsis develop potentially irreversible cerebral dysfunctions [1,2]. This sepsis-induced encephalopathy causes alteration of the mental state, ranging from mild disorientation or lethargy to coma and obtundation, and is commonly associated with abnormal electroencephalogram (EEG) patterns [2,3]. Scarce clinical data [5,6] and experimental data [7] show profound changes in cerebral blood flow associated with impaired carbon dioxide reactivity in severe sepsis and septic shock. Whether alterations of systemic or cerebral circulation might play a role in sepsis-
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.