Abstract

Neurovascular coupling has been well-defined in the adult brain, but variable and inconsistent responses have been observed in the neonatal brain. The mechanisms that underlie functional haemodynamic responses in the developing brain are unknown. Synchrotron radiation (SR) microangiography enables in vivo high-resolution imaging of the cerebral vasculature. We exploited SR microangiography to investigate the microvascular changes underlying the cerebral haemodynamic response in preterm (n = 7) and 7–10-day old term lambs (n = 4), following median nerve stimulation of 1.8, 4.8 and 7.8 sec durations. Increasing durations of somatosensory stimulation significantly increased the number of cortical microvessels of ≤200 µm diameter in 7–10-day old term lambs (p < 0.05) but not preterm lambs where, in contrast, stimulation increased the diameter of cerebral microvessels with a baseline diameter of ≤200 µm. Preterm lambs demonstrated positive functional responses with increased oxyhaemoglobin measured by near infrared spectroscopy, while 7–10-day old term lambs demonstrated both positive and negative responses. Our findings suggest the vascular mechanisms underlying the functional haemodynamic response differ between the preterm and 7–10-day old term brain. The preterm brain depends on vasodilatation of microvessels without recruitment of additional vessels, suggesting a limited capacity to mount higher cerebral haemodynamic responses when faced with prolonged or stronger neural stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call