Abstract

The present study was undertaken to ascertain the role of smooth muscles and pericytes in the microcirculation during hyperperfusion and hypoperfusion following ischemia in rats. Paired external carotids, the pterygopalatine branch of the internal carotids and the basilar artery were exposed and divided. Reversible inflatable occluders were placed around the common carotids. After 24 h, the unanesthetized rat underwent 10-min ischemia by inflating the occluders. Continuous cortical cerebral blood flow (c-CBF) was monitored by laser Doppler flowmetry. The measured c-CBF was below 20% of control (P < 0.001) during ischemia. A c-CBF of 227.5 +/- 54.1% (P < 0.001) was obtained during reperfusion hyperemia. A c-CBF of 59.7 +/- 8.8% (P < 0.001) occurred at the nadir of postischemic hypoperfusion, and this was followed by a second hyperemia. The cytoarchitecture of the vascular smooth muscles and pericytes was assessed by scanning electron microscopy. Samples were prepared using a KOH-collagenase digestion method. In control rats, arteriolar muscle cells showed smooth surfaces. Capillary pericytes were closely apposed to the endothelium. Immediately after reperfusion, transverse membrane creases were observed on the smooth muscle surfaces. During maximal hyperemia the creases disappeared. When c-CBF started to decrease the creases became visible again. Throughout the postischemic hypoperfusion the creases remained. Capillary endothelial walls became tortuous in the late phase of hypoperfusion. During the second hyperemia most arteriolar muscle cells showed smooth surfaces. Some pericytes appeared to have migrated from the vascular wall. The morphological changes of smooth muscle membranes suggest that they are related to specific perfusional disturbances during ischemia and reperfusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.