Abstract

Cerebral cavernous malformation (CCM) involves the homozygous inactivating mutations of one of three genes, ccm1, -2, or -3 resulting in hyperpermeable blood vessels in the brain. The CCM1, -2, and -3 proteins form a complex to organize the signaling networks controlling endothelial cell physiology including actin dynamics, tube formation, and adherens junctions. The common biochemical defect with the loss of CCM1, -2, or -3 is increased RhoA activity leading to the activation of Rho-associated coiled coil-forming kinase (ROCK). Inhibition of the ROCK rescues CCM endothelial cell dysfunction, suggesting that the inhibition of RhoA-ROCK signaling may be a therapeutic strategy to prevent or arrest the progression of the CCM lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.