Abstract

The purpose of this study was to determine whether perfusion-weighted imaging (PWI) and proton MR spectroscopy (MRS) are useful in differentiating high- and low-grade oligodendroglial tumors. PWI and MRS studies of 22 patients with histologically proven oligodendroglioma or oligoastrocytoma (13 low-grade and nine anaplastic tumors) were retrospectively reviewed. PWI of 14 subjects was performed with a dynamic contrast-enhanced susceptibility-weighted echo-planar technique. Intratumoral relative cerebral blood volume ratio was calculated and normalized to the same value in contralateral normal-appearing white matter. Multivoxel MRS was performed with a point-resolved spectroscopy sequence at a TE of 135 milliseconds in 20 patients and with the addition of a TE of 30 seconds in 17 patients. MRS data were expressed as intratumoral metabolite ratios (choline to creatine [Cho/Cr], choline to N-acetyl aspartate, N-acetyl aspartate to creatine, and myoinositol to creatine). Relative cerebral blood volume ratios were significantly different (p = 0.004) between low-grade (1.61 +/- 1.20) and high-grade tumors (5.45 +/- 1.96). The optimal relative cerebral blood volume ratio cutoff value in identification of anaplastic oligodendroglial tumors was 2.14. Analysis of MRS data showed significantly higher Cho/Cr ratios (p = 0.002) in high-grade than in low-grade tumors. A Cho/Cr ratio cutoff value of 2.33 had the highest accuracy in identification of high-grade tumors. Relative cerebral blood volume measurement and MRS are helpful in differentiating low-grade from anaplastic oligodendroglial tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.