Abstract

During acute hypoxic exposure, cerebral blood flow (CBF) increases to compensate for the reduced arterial oxygen content (CaO2). Nevertheless, as exposure extends, both CaO2 and CBF progressively normalize. Haemoconcentration is the primary mechanism underlying the CaO2 restoration and may therefore explain, at least in part, the CBF normalization. Accordingly, we tested the hypothesis that reversing the haemoconcentration associated with extended hypoxic exposure returns CBF towards the values observed in acute hypoxia. Twenty-three healthy lowlanders (12 females) completed two identical 4-day sojourns in a hypobaric chamber, one in normoxia (NX) and one in hypobaric hypoxia (HH, 3500m). CBF was measured by ultrasound after 1, 6, 12, 48 and 96h and compared between sojourns to assess the time course of changes in CBF. In addition, CBF was measured at the end of the HH sojourn after hypervolaemic haemodilution. Compared with NX, CBF was increased in HH after 1h (P=0.001) but similar at all later time points (all P>0.199). Haemoglobin concentration was higher in HH than NX from 12h to 96h (all P<0.001). While haemodilution reduced haemoglobin concentration from 14.8 ± 1.0 to 13.9 ± 1.2g·dl-1 (P<0.001), it did not increase CBF (974 ± 282 to 872 ± 200ml·min-1; P=0.135). We thus conclude that, at least at this moderate altitude, haemoconcentration is not the primary mechanism underlying CBF normalization with acclimatization. These data ostensibly reflect the fact that CBF regulation at high altitude is a complex process that integrates physiological variables beyond CaO2. KEY POINTS: Acute hypoxia causes an increase in cerebral blood flow (CBF). However, as exposure extends, CBF progressively normalizes. We investigated whether hypoxia-induced haemoconcentration contributes to the normalization of CBF during extended hypoxia. Following 4 days of hypobaric hypoxic exposure (corresponding to 3500m altitude), we measured CBF before and after abolishing hypoxia-induced haemoconcentration by hypervolaemic haemodilution. Contrary to our hypothesis, the haemodilution did not increase CBF in hypoxia. Our findings do not support haemoconcentration as a stimulus for the CBF normalization during extended hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call