Abstract

BackgroundPositron emission tomography (PET) allows for the measurement of cerebral blood flow (CBF; based on [15O]H2O) and cerebral metabolic rate of glucose utilization (CMRglu; based on [18 F]-2-fluoro-2-deoxy-d-glucose ([18 F]FDG)). By using kinetic modeling, quantitative CBF and CMRglu values can be obtained. However, hardware limitations led to the development of semiquantitive calculation schemes which are still widely used. In this paper, the analysis of CMRglu and CBF scans, acquired on a current state-of-the-art PET brain scanner, is presented. In particular, the correspondence between nonlinear as well as linearized methods for the determination of CBF and CMRglu is investigated. As a further step towards widespread clinical applicability, the use of an image-derived input function (IDIF) is investigated.MethodsThirteen healthy male volunteers were included in this study. Each subject had one scanning session in the fasting state, consisting of a dynamic [15O]H2O scan and a dynamic [18 F]FDG PET scan, acquired at a high-resolution research tomograph. Time-activity curves (TACs) were generated for automatically delineated and for manually drawn gray matter (GM) and white matter regions. Input functions were derived using on-line arterial blood sampling (blood sampler derived input function (BSIF)). Additionally, the possibility of using carotid artery IDIFs was investigated. Data were analyzed using nonlinear regression (NLR) of regional TACs and parametric methods.ResultsAfter quality control, 9 CMRglu and 11 CBF scans were available for analysis. Average GM CMRglu values were 0.33 ± 0.04 μmol/cm3 per minute, and average CBF values were 0.43 ± 0.09 mL/cm3 per minute. Good correlation between NLR and parametric CMRglu measurements was obtained as well as between NLR and parametric CBF values. For CMRglu Patlak linearization, BSIF and IDIF derived results were similar. The use of an IDIF, however, did not provide reliable CBF estimates.ConclusionNonlinear regression analysis, allowing for the derivation of regional CBF and CMRglu values, can be applied to data acquired with high-spatial resolution current state-of-the-art PET brain scanners. Linearized models, applied to the voxel level, resulted in comparable values. CMRglu measurements do not require invasive arterial sampling to define the input function.Trial registrationClinicalTrials.gov NCT00626080

Highlights

  • Positron emission tomography (PET) allows for the measurement of cerebral blood flow (CBF; based on [15O]H2O) and cerebral metabolic rate of glucose utilization (CMRglu; based on [18 F]-2-fluoro-2-deoxy-D-glucose ([18 [18 F]-2-fluoro-2-deoxy-Dglucose (F]FDG)))

  • Results [18 F]FDG scans were acquired in all 13 subjects and [15O]H2O scans in 12 subjects

  • Due to technical problems, [18 F]FDG and [15O]H2O data could not be obtained for one subject

Read more

Summary

Introduction

Positron emission tomography (PET) allows for the measurement of cerebral blood flow (CBF; based on [15O]H2O) and cerebral metabolic rate of glucose utilization (CMRglu; based on [18 F]-2-fluoro-2-deoxy-D-glucose ([18 F]FDG)). The analysis of CMRglu and CBF scans, acquired on a current state-of-the-art PET brain scanner, is presented. Positron emission tomography (PET) measurements using [18 F]-2-fluoro-2-deoxy-D-glucose ([18 F]FDG) allow for quantitative determination of the cerebral metabolic rate of glucose utilization (CMRglu) [1,2]. Rate constants were measured [3,4,5] using the compartment model developed by Sokoloff and co-workers [6], thereafter, CMRglu measurements were increasingly based on the assumption of fixed rate constants in combination with static scans [7]. Scanners were too slow for fast dynamic scans, leading to steady-state [9] and autoradiographic protocols [10]. In a review by Silverman and Phelps, it was noted that CBF measurements showed more variability than CMRglu measurements with standard deviations within investigations of around 10% to 20% and up to 100% between investigations [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.