Abstract

AimIncreased oxidative stress in cerebral mitochondria may follow exposure to the systemic hypobaric hypoxia associated with residing at higher altitudes. Because mitochondrial dysfunction is implicated in bipolar disorder (BD) pathophysiology, this may impact the cerebral bioenergetics in BD. In this study, we evaluated the cerebral bioenergetics of BD and healthy control (HC) subjects at two sites, located at sea level and at moderate altitude.MethodsForty‐three veterans with BD and 33 HC veterans were recruited in Boston (n = 22) and Salt Lake City (SLC; n = 54). Levels of phosphocreatine, β nucleoside triphosphate (βNTP), inorganic phosphate, and pH over total phosphate (TP) were measured using phosphorus‐31 magnetic resonance spectroscopy in the following brain regions: anterior cingulate cortex and posterior occipital cortex, as well as bilateral prefrontal and occipitoparietal (OP) white matter (WM).ResultsA significant main effect of site was found in βNTP/TP (Boston > SLC) and phosphocreatine/TP (Boston < SLC) in most cortical and WM regions, and inorganic phosphate/TP (Boston < SLC) in OP regions. A main effect analysis of BD diagnosis demonstrated a lower pH in posterior occipital cortex and right OP WM and a lower βNTP/TP in right prefrontal WM in BD subjects, compared to HC subjects.ConclusionThe study showed that there were cerebral bioenergetic differences in both BD and HC veteran participants at two different sites, which may be partly explained by altitude difference. Future studies are needed to replicate these results in order to elucidate the dysfunctional mitochondrial changes that occur in response to hypobaric hypoxia.

Highlights

  • ObjectivesIncreased oxidative stress in cerebral mitochondria may follow exposure to the systemic hypobaric hypoxia associated with residing at higher altitudes

  • A significant main effect of site was found in β nucleoside triphosphate (βNTP)/total phosphate (TP) (Boston > Salt Lake City (SLC)) and phosphocreatine/TP

  • A main effect analysis of bipolar disorder (BD) diagnosis demonstrated a lower pH in posterior occipital cortex and right OP white matter (WM) and a lower βNTP/TP in right prefrontal WM in BD subjects, compared to healthy control (HC) subjects

Read more

Summary

Objectives

Increased oxidative stress in cerebral mitochondria may follow exposure to the systemic hypobaric hypoxia associated with residing at higher altitudes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.