Abstract

Long-term survivors of craniospinal irradiation have an increased risk for stroke which increases with radiation dose and follow-up time. Radiotherapy induces structural changes of the cerebral vasculature, affecting both, large, and small vessels. It is unknown how these structural changes affect functional mechanisms of cerebral blood flow regulation such as cerebral autoregulation and neurovascular coupling. Using the transcranial Doppler, we compared dynamic cerebral autoregulation and neurovascular coupling of 12 patients after long-term survival of craniospinal irradiation due to a malignant pediatric brain tumor of the posterior fossa and 12 age- and sex-matched healthy patients. Mean arterial blood pressure and cerebral blood flow velocities in the middle and posterior cerebral artery were recorded at rest during normal breathing to assess cerebral autoregulation (transfer function parameters phase and gain, as well as the correlation coefficient indices Mx, Sx, and Dx), and during 10 cycles of a visual task to assess neurovascular coupling (parameters time delay, natural frequency, gain, attenuation, and rate time). Parameters of cerebral autoregulation showed a consistent trend toward reduced cerebral autoregulation in patients that did not reach statistical significance. Neurovascular coupling was not altered after craniospinal irradiation. In this pilot study, we demonstrated a trend toward reduced cerebral autoregulation, and no alteration of neurovascular coupling after irradiation in long-term survivors of malignant pediatric brain tumors of the posterior fossa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call