Abstract
Human risk tolerance is highly idiosyncratic and individuals often show distinctive preferences when faced with similar risky situations. However, the neural underpinnings of individual differences in risk-taking remain unclear. Here we combined structural and perfusion MRI and examined the associations between brain anatomy and individual risk-taking behavior/risk tolerance in a sample of 115 healthy participants during the Balloon Analogue Risk Task, a well-established sequential risky decision paradigm. Both whole brain and region-of-interest analyses showed that the left cerebellum gray matter volume (GMV) has a strong association with individual risk-taking behavior and risk tolerance, outperforming the previously reported associations with the amygdala and right posterior parietal cortex (PPC) GMV. Left cerebellum GMV also accounted for risk tolerance and risk-taking behavior changes with aging. However, regional cerebral blood flow (CBF) provided no additional predictive power. These findings suggest a novel cerebellar anatomical contribution to individual differences in risk tolerance. Further studies are necessary to elucidate the underestimated important role of cerebellum in risk-taking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.