Abstract

To initiate goal-directed behavior, animals must transform sensory cues into motor commands that generate appropriately timed actions. Sensorimotor transformations along the cerebellar-thalamocortical pathway are thought to shape motor cortical output and movement timing, but whether this pathway initiates goal-directed movement remains poorly understood. Here, we recorded and perturbed activity in cerebellar-recipient regions of motor thalamus (dentate / interpositus nucleus-recipient regions, MThDN/IPN) and primary motor cortex (M1) in mice trained to execute a cued forelimb lever push task for reward. MThDN/IPN population responses were dominated by a time-locked increase in activity immediately prior to movement that was temporally uncoupled from cue presentation, providing a fixed latency feedforward motor timing signal to M1FL. Blocking MThDN/IPN output suppressed cued movement initiation. Stimulating the MThDN/IPN thalamocortical pathway in the absence of the cue recapitulated cue-evoked M1 membrane potential dynamics and forelimb behavior in the learned behavioral context, but generated semi-random movements in an altered behavioral context. Thus, cerebellar-recipient motor thalamocortical input to M1 is indispensable for the generation of motor commands that initiate goal-directed movement, refining our understanding of how the cerebellar-thalamocortical pathway contributes to movement timing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.