Abstract

Studies have demonstrated dysfunctional connectivity between the cortico-basal ganglia and cerebellar networks in Parkinson’s disease (PD). These networks are critical for appropriate motor and cognitive functions, specifically to control gait and postural tasks in PD. Our recent reports have shown abnormal cerebellar oscillations during rest, motor, and cognitive tasks in people with PD compared to healthy individuals, however, the role of cerebellar oscillations in people with PD and freezing of gait (PDFOG+) during lower-limb movements has not been examined. Here, we evaluated cerebellar oscillations using electroencephalography (EEG) electrodes during cue-triggered lower-limb pedaling movement in 13 PDFOG+, 13 PDFOG–, and 13 age-matched healthy subjects. We focused analyses on the mid-cerebellar Cbz as well as lateral cerebellar Cb1 and Cb2 electrodes. PDFOG+ performed the pedaling movement with reduced linear speed and higher variation compared to healthy subjects. PDFOG+ exhibited attenuated theta power during pedaling motor tasks in the mid-cerebellar location compared to PDFOG– or healthy subjects. Cbz theta power was also associated with FOG severity. No significant differences between groups were seen in Cbz beta power. In the lateral cerebellar electrodes, lower theta power was seen between PDFOG+ and healthy subjects. Our cerebellar EEG data demonstrate the occurrence of reduced theta oscillations in PDFOG+ during lower-limb movement and suggest a potential cerebellar biosignature for neurostimulation therapy to improve gait dysfunctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call