Abstract

Niemann-Pick type C disease (NPC) is an autosomal recessive lipidosis characterized by progressive neurodegeneration. Although several studies have revealed unusual accumulation of unesterfied cholesterol in astrocytic lysosome of NPC, pathophysiological basis of cerebellar neuronal dysfunction remains unclear. We compared parallel fiber-Purkinje cell synaptic transmission and long-term depression (LTD) in +/+npc (nih) (npc(+/+)) and -/-npc(nih) (npc(-/-)) mice. Our data showed that adenosine A1 receptor agonists decreased parallel fiber excitatory postsynaptic current (EPSC) amplitude and mEPSC frequency while its antagonists increased EPSC amplitude and mEPSC frequency in wild type and mutant mice. Furthermore, parallel fiber LTD was deficient in npc(-/-) mice and supplement of adenosine triphosphate (ATP) rescued the impaired LTD. Taken together, these experiments suggest that synaptic strength and LTD are altered in npc(-/-) mice due to the decrease of ATP/adenosine release and deactivation of A1 receptors in parallel fiber terminals. The enhanced synaptic transmission and the decreased LTD might result in progressive neurotoxicity of Purkinje cells in npc(-/-) mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call