Abstract

BackgroundWarts Hypogammaglobulinemia Immunodeficiency Myelokathexis (WHIM) syndrome is a primary immunodeficiency characterized by recurrent bacterial infections, severe chronic neutropenia, with lymphopenia, monocytopenia and myelokathexis which is caused by heterozygous gain of functions mutations of the CXC chemokine receptor 4 (CXCR4). WHIM patients display an increased incidence of non-hematopoietic conditions, such as congenital heart disease suggesting that abnormal CXCR4 may put these patients at increased risk of congenital anomalies.Studies conducted on CXCR4 and SDF-1-deficient mice have demonstrated the role of CXCR4 signaling in neuronal cell migration and brain development. In particular, CXCR4 conditional knockout mice display abnormal cerebellar morphology and poor coordination and balance on motor testing.ResultsIn order to evaluate a possible neurological involvement in WHIM syndrome subjects, we performed neurological examination, including International Cooperative Ataxia Rating Scale, cognitive and psychopathological assessment and brain Magnetic Resonance Imaging (MRI) in 6 WHIM patients (age range 8–51 years) with typical gain of functions mutations of CXCR4 (R334X or G336X). In three cases (P3, P5, P6) neurological evaluation revealed fine and global motor coordination disorders, balance disturbances, mild limb ataxia and excessive talkativeness. Brain MRI showed an abnormal orientation of the cerebellar folia involving bilaterally the gracilis and biventer lobules together with the tonsils in four subjects (P3, P4, P5, P6). The neuropsychiatric evaluation showed increased risk of internalizing and/or externalizing problems in four patients (P2, P3, P4, P6).ConclusionsTaken together, these observations suggest CXCR4 gain of function mutations can be associated with cerebellar malformation, mild neuromotor and psychopathological dysfunction in WHIM patients.

Highlights

  • Warts Hypogammaglobulinemia Immunodeficiency Myelokathexis (WHIM) syndrome is a primary immunodeficiency characterized by recurrent bacterial infections, severe chronic neutropenia, with lymphopenia, monocytopenia and myelokathexis which is caused by heterozygous gain of functions mutations of the CXC chemokine receptor 4 (CXCR4)

  • Warts Hypogammaglobulinemia Immunodeficiency Myelokathexis (WHIM) syndrome is a rare primary immunodeficiency characterized by recurrent bacterial infections, severe congenital neutropenia, with lymphopenia and monocytopenia, associated with myelokathexis in the bone marrow, the latter resulting from the abnormal retention of neutrophils that become senescent [1,2,3,4]

  • We conclude that CXCR4 gain-of-function mutations may be associated with a mild cerebellar malformation and mild neuromotor and neuropsychological dysfunctions

Read more

Summary

Introduction

Warts Hypogammaglobulinemia Immunodeficiency Myelokathexis (WHIM) syndrome is a primary immunodeficiency characterized by recurrent bacterial infections, severe chronic neutropenia, with lymphopenia, monocytopenia and myelokathexis which is caused by heterozygous gain of functions mutations of the CXC chemokine receptor 4 (CXCR4). Warts Hypogammaglobulinemia Immunodeficiency Myelokathexis (WHIM) syndrome is a rare primary immunodeficiency characterized by recurrent bacterial infections, severe congenital neutropenia, with lymphopenia and monocytopenia, associated with myelokathexis in the bone marrow, the latter resulting from the abnormal retention of neutrophils that become senescent [1,2,3,4]. Studies conducted on CXCR4 and SDF-1-deficient mice have demonstrated the important role of this molecular signaling in neuronal cell migration and brain development [13,14,15,16]. Considering the role of CXCR4 in cerebellum development, the aim of our study was to explore the neuropsychiatric clinical profile together with the possible central nervous system (CNS) involvement, focusing on cerebellar function and structure, in a cohort of WHIM patients

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call