Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by various motor and non-motor symptoms. The complexity of its symptoms suggests that PD is a heterogeneous neurological disorder. Its pathological changes are not limited to the substantia nigra-striatal system, but gradually extending to other regions including the cerebellum. The cerebellum is connected to a wide range of central nervous system regions that form essential neural circuits affected by PD. In addition, altered dopaminergic activity and α-synuclein pathology are found in the cerebellum, further suggesting its role in the PD progression. Furthermore, an increasing evidence obtained from imaging studies has demonstrated that cerebellar structure, functional connectivity, and neural metabolism are altered in PD when compared to healthy controls, as well as among different PD subtypes. This review provides a comprehensive summary of the cerebellar pathophysiology and results from neuroimaging studies related to both motor and non-motor symptoms of PD, highlighting the potential significance of cerebellar assessment in PD diagnosis, differential diagnosis, and disease monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.