Abstract
Using retrograde transneuronal transfer of rabies virus in combination with a conventional tracer (cholera toxin B), we studied simultaneously direct (thalamocortical) and polysynaptic inputs to the ventral lateral intraparietal area (LIPv) and the medial intraparietal area (MIP) in nonhuman primates. We found that these areas receive major disynaptic inputs from specific portions of the cerebellar nuclei, the ventral dentate (D), and ventrolateral interpositus posterior (IP). Area LIPv receives inputs from oculomotor domains of the caudal D and IP. Area MIP is the target of projections from the ventral D (mainly middle third), and gaze- and arm-related domains of IP involved in reaching and arm/eye/head coordination. We also showed that cerebellar cortical "output channels" to MIP predominantly stem from posterior cerebellar areas (paramedian lobe/Crus II posterior, dorsal paraflocculus) that have the required connectivity for adaptive control of visual and proprioceptive guidance of reaching, arm/eye/head coordination, and prism adaptation. These findings provide important insight about the interplay between the posterior parietal cortex and the cerebellum regarding visuospatial adaptation mechanisms and visual and proprioceptive guidance of movement. They also have potential implications for clinical approaches to optic ataxia and neglect rehabilitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.