Abstract

It is widely assumed that the cerebellum is one of the main nervous centers involved in correcting and refining planned movement and accounting for disturbances occurring during movement, for instance, due to the manipulation of objects which affect the kinematics and dynamics of the robot-arm plant model. In this brief, we evaluate a way in which a cerebellar-like structure can store a model in the granular and molecular layers. Furthermore, we study how its microstructure and input representations (context labels and sensorimotor signals) can efficiently support model abstraction toward delivering accurate corrective torque values for increasing precision during different-object manipulation. We also describe how the explicit (object-related input labels) and implicit state input representations (sensorimotor signals) complement each other to better handle different models and allow interpolation between two already stored models. This facilitates accurate corrections during manipulations of new objects taking advantage of already stored models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.