Abstract

Lurcher mutant mice of the C3H strain provide a model of both cerebellar and retinal degeneration. Therefore, they enable the study of the behavior of cerebellar mutants under disabled visual orientation conditions. We aimed to examine cerebellar Lurcher mutants and wild type mice with intact cerebella with and without retinal degeneration employing the rotarod and Morris water maze tests. The positions of the hidden platform and the starting point in the water maze test were stable so as to enable the use of both idiothetic navigation and visual inputs. The Lurcher mice evinced approximately 90 % shorter fall latencies on the rotarod than did the wild type mice. Retinal degeneration exerted no impact on motor performance. Only the wild type mice with normal retina were able to find the water maze platform efficiently. The wild type mice with retinal degeneration developed immobility (almost 25 % of the time) as a sign of behavioral despair. The Lurchers maintained high swimming activity as a potential manifestation of stress-induced behavioral disinhibition and their spatial performance was related to motor skills and swim speed. We demonstrated that both motor deficit and pathological behavior have the potential to contribute to abnormal performance in spatial tasks. Thus, spatial disability in cerebellar mutants is most likely a complex consequence of multiple disturbances related to cerebellar dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.