Abstract
Classical conditioning of the nictitating membrane-eye blink response of rabbits is a simple form of associative motor learning. Lesion studies have shown that performance of learned responses is dependent on the cerebellum, but they have not shown whether there is storage of memories within the cerebellum or distinguished the roles of the cerebellar cortex and nuclei. Reversible inactivations of the cerebellar nuclei have directly implicated the cerebellum in the acquisition of nictitating membrane conditioning, but previously the cerebellar cortex has not been reversibly inactivated to assess its contribution to the performance or acquisition of conditioned responses. Here we use the water-soluble disodium salt of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) reversibly to block cerebellar cortical AMPA-kainate receptors in lobule HVI and quantitative autoradiography to map its distribution. Conditioned responses are completely, but reversibly, abolished for 10-60 min depending on the concentration of the CNQX infusion and its location within HVI. Zebrin immunohistochemistry was used to define the optimal cortical infusion site that, we suggest, corresponds to the location of the eye blink control regions. We confirm that areas in HVI are essential for the expression of classically conditioned nictitating membrane responses, and we establish a method to analyze the role of cerebellar cortex in the acquisition of this form of motor learning.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.