Abstract

Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

Highlights

  • An alarming situation across the globe at present is the rise in global warming, which has a direct impact on climatic changes like decrease in land ice (287 billion metric tons/year), rise in carbon dioxide (401.58 ppm), temperature rise (1.4◦F since 1880), drought, depletion in fresh water level (35% per decade), melting of ice (13.3% per decade), rise in the sea level (3.24 mm/year), forest fires and most important food shortage caused by yield reduction

  • Profound alterations are observed in the protein abundances between control and stressed plants as well as between different genotypes (Table 1). These changes cannot be revealed by classical RNAseq or any other genomic technology and are highly complementary to existing genome-wide RNAseq or EST data

  • We have summarized drought responsive proteins (DRP’s) in Table 1 thereby providing an reference point to develop regulatory models for drought stress responses in cereal crop plants, such as wheat, rice, maize, barley, sorghum, and pearl millet

Read more

Summary

INTRODUCTION

An alarming situation across the globe at present is the rise in global warming, which has a direct impact on climatic changes like decrease in land ice (287 billion metric tons/year), rise in carbon dioxide (401.58 ppm), temperature rise (1.4◦F since 1880), drought, depletion in fresh water level (35% per decade), melting of ice (13.3% per decade), rise in the sea level (3.24 mm/year), forest fires and most important food shortage caused by yield reduction (http://climate.nasa.gov/evidence/). All these processes maybe involved simultaneously in plant responses to drought stress and followed by re-watering (Mitra, 2001) This complexity cannot be resolved without comprehensive data mining strategies involving genome-scale metabolic reconstruction and modeling as well as statistical multivariate methods developed in the framework of systems biology (Weckwerth, 2003, 2008, 2011a,b; Nukarinen et al, 2016). The following sections will focus on different food crops like wheat, rice, maize, barley, sorghum and pearl millet providing insights of the drought stress proteomes and identification of putative biomarker aiming for the understanding of systemic drought responses and subsequent selection of markers for the process described above.

SUMMARY AND SIMPLIFIED SCHEME OF
CONCLUSION AND FUTURE PROSPECTS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call