Abstract
Pseudocercosporella capsellae, the causative agent of white leaf spot disease in Brassicaceae, can produce a purple-pink pigment on artificial media resembling, but not previously confirmed as, the toxin cercosporin. Chemical extraction with ethyl acetate from growing hyphae followed by quantitative (thin-layer chromatography [TLC] and high-performance liquid chromatography [HPLC]) and qualitative methods showed an identical absorption spectrum, with similar retardation factor (Rf) values on TLC papers and an identical peak with the same retention time in HPLC as for a standard for cercosporin. We believe this is the first report to confirm that the purple-pink pigment produced by P. capsellae is cercosporin. Confocal microscopy detected green autofluorescence of cercosporin-producing hyphae, confirming the presence of cercosporin inside hyphae. The highly virulent UWA Wlra-7 isolate of P. capsellae produced the greatest quantity of cercosporin (10.69 mg g-1). The phytotoxicity and role of cercosporin in disease initiation across each of three Brassicaceae host species (Brassica juncea, B. napus, and Raphanus raphanistrum) was also studied. Culture filtrates containing cercosporin were phytotoxic to all three host plant species, producing large, white lesions on highly sensitive B. juncea, only water-soaked areas on least sensitive R. raphanistrum, and intermediate lesions on B. napus. It is noteworthy that sensitivity to cercosporin of these three host species was analogous to their susceptibility to the pathogen, viz., B. juncea the most susceptible, R. raphanistrum the least susceptible, and B. napus intermediate. The presence of cercosporin in the inoculum significantly increased disease severity on the highly cercosporin-sensitive B. juncea. We believe that this is the first study to demonstrate that P. capsellae produces cercosporin in liquid culture rather than agar media. Finally, this study highlights an important role of cercosporin as a pathogenicity factor in white leaf spot disease on Brassicaceae as evidenced by the ability of the cercosporin-rich culture filtrate to reproduce white leaf spot lesions on host plants and by the enhanced virulence of P. capsellae in the presence of cercosporin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.