Abstract
Well-defined gradients of the lipid mediator sphingosine-1-phosphate (S1P) direct chemotactic egress of mature thymocytes from the thymus into the circulation. Although it is known that these gradients result from low S1P levels in the thymic parenchyma and high S1P concentrations at the exit sites and in the plasma, the biochemical mechanisms that regulate these differential S1P levels remain unclear. Several studies demonstrated that ceramide synthase 2 (Cers2) regulates the levels of the S1P precursor sphingosine. We, therefore, investigated whether Cers2 is involved in the regulation of S1P gradients and S1P-dependent egress into the circulation. By analyzing Cers2-deficient mice, we demonstrate that Cers2 limits the levels of S1P in thymus and blood to maintain functional S1P gradients that mediate thymocyte emigration into the circulation. This function is specific for Cers2, as we also show that Cers4 is not involved in the regulation of thymic egress. Our study identified Cers2 as an important regulator of S1P-dependent thymic egress, and thus contributes to the understanding of how S1P gradients are maintained in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.