Abstract

Transparent polycrystalline that is ‘ceramic’ laser materials offer numerous advantages over melt growth methods, including faster production times, their solid solution allows the fabrication of multi-phase transition materials that are highly homogeneous and they show the ability to engineer profiles and structures before sintering. Much progress has been made in improving the optical quality of ceramics, as well as exploring new laser materials. Successfully developed concentrated Nd:YAG ceramics has opened the way for drastic heat reduction by pumping directly into the upper laser level. Especially for the composite structure fabrication, it is attractive because of low fabrication costs by mass production and short delivery times compared with conventional diffusion bonding. In this research, we report on > 300 W continuous wave (CW) laser operation in an edge-pumped 300 μm-thick, single crystal Yb:YAG/ceramic YAG composite microchip. To cite this article: T. Taira, C. R. Physique 8 (2007).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.