Abstract

The wear of artificial joints can lead to joint noise and tissue pathology within the human body, which is a primary factor affecting their service life. In response to the issue of wear in ceramic–titanium alloy artificial hip joints, this study employed hip joint wear simulations and experimental wear testing on hip joint specimens to investigate the impact of different contact surface parameters on the wear of ceramic–titanium alloy articulating surfaces. The objective was to provide guidance for joint surface treatment to minimize wear. The simulation results demonstrated that the contacting surfaces of the articulating components exhibited a crescent-shaped surface composition before and after wear. The initial variation in the surface friction coefficient had minimal influence on the wear rate after stabilization, whereas excessively high friction coefficients led to erratic changes in wear depth. Based on the simulation results, experimental research was conducted to compare the wear results of different surface roughness values ranging from 60 to 550 nm. The findings revealed that a surface roughness of 150 nm exhibited the least amount of wear and the best anti-wear performance. Furthermore, an exploration of the mechanism behind the influence of different surface friction coefficients on the wear of the articulating surfaces provided valuable insights for surface processing and wear analysis of artificial joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.