Abstract

The Ceramic Stationary Gas Turbine (CSGT) program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technologies. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the selective replacement of cooled metallic hot section components with uncooled ceramic parts. This review summarizes the progress on Phase III of the program which involves field testing of the ceramic components at a cogeneration end user site and characterization of the ceramic components following the field test exposure. The Solar Centaur 50S engine, which operates a turbine rotor inlet temperature (TRIT) of 1010°C (1850°F), was selected for the developmental program. The program goals include an increase in the TRIT to 1121°C (2050 °F), accompanied by increases in thermal efficiency and output power. This will be accomplished by the incorporation of uncooled ceramic first stage blades and nozzles, and a “hot wall” ceramic combustor liner. The performance improvements are attributable to the increase in TRIT and the reduction in cooling air requirements for the ceramic parts. The “hot wall” ceramic liners also enable a reduction in gas turbine emissions of NOx and CO. The component design and material selection have been definitized for the ceramic blades, nozzles and combustor liners. Each of these ceramic component designs were successfully tested in short term engine tests in the Centaur 50S engine test cell facility at Solar. Based on the results of the engine testing of the ceramic components, minor redesigns of the ceramic/metallic attachments were conducted where necessary. Based on their performance in a 100 hour cyclic in-house engine test, the ceramic components are approved for field testing. To date, four field installations of the CSGT Centaur 50S engine totaling over 4000 hours of operation have been initiated under the program at an industrial cogeneration site. This paper discusses the component design and material selection, in house engine testing, field testing, and component characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call