Abstract
The purpose of the work is the obtaining of magnesium silicate ceramic proppants, based on ultrabasic overburden rocks of Kempirsai deposits of chromite ores (Kazakhstan). The chemical and mineralogical composition of ultrabasic overburden rock was studied by chemical, microscopic and X-ray diffraction analyzes. It is established that the main mineral of ultrabasic overburden rocks is serpentine, present in the form of fibrous chrysotile and lamellar antigorite. In the impurities are iron oxides and hydroxides, chrome spinel, carbonates, quartz. Assessment of the use of overburden rocks as a raw material for the production of ceramic proppants was carried out. The sintering interval of overburden rocks was determined at 1280-1300 °C. The sintering firing optimum temperature of ceramics, based on this type of raw material is 1300 °C. It is established that to harden the structure of magnesium silicate ceramic it is necessary to activate the raw material thermally at a temperature of 1000 °C. The influence of binder type on the properties of magnesium silicate proppants, based on the Kempirsai serpentinites was studied. Magnesium silicate proppants, based on ultrabasic overburden rocks, were obtained with the following properties: apparent density – 1.6 g/cm3, strength resistance (52 MPa) – 14%, sphericity and roundness – 0.8; chemical resistance (hydrochloric acid) – 98%, static strength of the fraction 16/20 - 72–118 N/granule. The field of application is oil and gas production, metallurgy and ceramic industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.