Abstract

Pb(Mg 1/3Nb 2/3)O 3–0.32(PbTiO 3), PMN–0.32PT, single crystals have been characterized under combined stress and electric field loading [McLaughlin EA, Liu T, Lynch CS. Relaxor ferroelectric PMN–32%PT crystals under stress and electric field loading: I-32 mode measurements. Acta Mater 2004;52:3849, McLaughlin EA, Liu T, Lynch CS. Relaxor ferroelectric PMN–32%PT crystals under stress, electric field and temperature loading: II-33-mode measurements. Acta Mater 2005;53:4001] [1–3]. This approach is extended to PMN–0.26PT single crystals to explore the effect of composition on field driven phase transformations and to PMN–0.32PT ceramic specimens to compare with polycrystalline behavior. Electric displacement and strain were measured as a function of combinations of stress and both unipolar and bipolar electric fields. The single-crystal results indicate that compositions further from the morphotropic phase boundary require higher driving forces for field induced phase transformations. Evidence of these transformations is not apparent in the results from the ceramic specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.