Abstract

Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment “food bank” for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550–625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured δ13C and δ15N values in major megafaunal taxa (n=26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in δ13C values (>14‰) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of δ13C values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian (Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic–pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.