Abstract

We present a complete theoretical scenario for classical Cepheids in the most commonly used HST/WFC3 filters, going from optical (F555W, F606W and F814W) to near-infrared (F160W) bands. The importance of such a study is related to the recent release of new classical Cepheids observed with HST/WFC3 in 8 distant galaxies where SNIa are hosted. These observations have posed sound constraints to the current distance scale with uncertainties on the Hubble constant Ho smaller than 3%. Our models explore a large range of metallicity and Helium content, thus providing a robust and unique theoretical tool for describing these new and future HST/WFC3 observations. As expected, the Period-Luminosity (PL) relation in F160W filter is linear and slightly dependent on the metallicity when compared with optical bands, thus it seems the most accurate tool to constrain extragalactic distances with Cepheids. We compare the pulsation properties of Cepheids observed with HST/WFC3-IR with our theoretical scenario and we discuss the agreement with the predicted Instability Strip for all the investigated galaxy samples including the case of NGC4258. Finally, adopting our theoretical F160W PL relation for Z=0.02 and log P>1.0, we derive new distance moduli. In particular, for NGC 4258, we derive a distance modulus mu0 = 29.345 +- 0.004 mag with a sigma = 0.34 mag, which is in very good agreement with the geometrical maser value. Moreover, using the obtained distance moduli, we estimate the Hubble constant value, Ho=76.0 +- 1.9 km s-1 Mpc-1 in excellent agreement with the most recent literature values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.