Abstract

We have used the infrared Barnes-Evans surface brightness technique to derive the radii and distances of 34 Galactic Cepheid variables. Radius and distance results obtained from both versions of the technique are in excellent agreement. The radii of 28 variables are used to determine the period-radius relation. This relation is found to have a smaller dispersion than in previous studies, and is identical to the period-radius relation found by Laney & Stobie from a completely independent method, a fact which provides persuasive evidence that the Cepheid period-radius relation is now determined at a very high confidence level. We use the accurate infrared distances to determine period-luminosity relations in the V, I, J, H and K passbands from the Galactic sample of Cepheids. We derive improved slopes of these relations from updated LMC Cepheid samples and adopt these slopes to obtain accurate absolute calibrations of the PL relation. By comparing these relations to the ones defined by the LMC Cepheids, we derive strikingly consistent and precise values for the LMC distance modulus in each of the passbands which yield a mean value of DM (LMC) = 18.46 +- 0.02. Our results show that the infrared Barnes-Evans technique is very insensitive to both Cepheid metallicity and adopted reddening, and therefore a very powerful tool to derive accurate distances to nearby galaxies by a direct application of the technique to their Cepheid variables, rather than by comparing PL relations of different galaxies, which introduces much more sensitivity to metallicity and absorption corrections which are usually difficult to determine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.