Abstract

Cephalopods’ visually driven, dynamic and diverse skin display makes them a key animal model in sensory ethology and camouflage research. Development of novel methods is critically important in order to monitor and objectively quantify cephalopod behavior. In this work, the development of Cephalopod Experimental Projected Habitat (CEPH) is described. This newly developed experimental design bridges computational and ethological sciences, providing a visually controlled arena which requires limited physical space and minimal previous technical background. Created from relatively inexpensive and readily available materials, the experimental apparatus utilizes reflected light which closely resembles natural settings. Preliminary results suggest the experimental design reproducibly challenges marine organisms with visually dynamic surroundings, including videos of prey and predator. This new approach should offer new avenues for marine organism sensory research and may serve researchers from various fields.

Highlights

  • Cephalopods does not require ethical authorization under the Institutional Animal Care and Use Committee (IACUC), the experiments carried out in this study complied with the European legislation for animal experiments and with EU directive 2010/63 on the protection of animals used for scientific purposes (Smith et al, 2013; Fiorito et al, 2014)

  • I describe some of the preliminary results of our system

  • Pros: The light regime, intensity, and the visual input are displayed, modified and potentially allow addressing a versatile set of question. Another point is that a light coming from the water surface and reflected from the tank back to the animal’s eye resembles the light field in real scenario vs. the Plasma/LCD display alternatives

Read more

Summary

Introduction

Cephalopods multilayered and sophisticated skin structure consists of a dense network of pigmented muscle-driven chromatophore cells, which are neurally stimulated to actuate and affect local skin coloring (reviewed in Hanlon and Messenger, 1998) When camouflaging, these visually-oriented mollusks alter their appearance to match their surroundings which, providing researchers a glimpse into the animal’s apparent visual perspective (Messenger, 1977; Muntz and Gwyther, 1988; Hanlon and Messenger, 1998; Chiao and Hanlon, 2001b; Barbosa et al, 2007; Hanlon et al, 2009; Josef et al, 2012, 2017; Schwarz, 2015). Much was learned about cephalopod’s behavior using these important static backgrounds, the rapid and dynamic

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.