Abstract

The intraflagellar transport (IFT) machinery mediates the import and export of ciliary proteins across the ciliary gate, as well as bidirectional protein trafficking within cilia. In addition to ciliary anterograde protein trafficking, the IFT-B complex participates in the export of membrane proteins together with the BBSome, which consists of eight subunits encoded by the causative genes of Bardet-Biedl syndrome (BBS). The IFT25-IFT27/BBS19 dimer in the IFT-B complex constitutes its interface with the BBSome. We show here that IFT25-IFT27 and the RABL2 GTPase bind the IFT74/BBS22-IFT81 dimer of the IFT-B complex in a mutually exclusive manner. Cells expressing GTP-locked RABL2 [RABL2(Q80L)], but not wild-type RABL2, phenocopied IFT27-knockout cells, that is, they demonstrated BBS-associated ciliary defects, including accumulation of LZTFL1/BBS17 and the BBSome within cilia and the suppression of export of the ciliary GPCRs GPR161 and Smoothened. RABL2(Q80L) enters cilia in a manner dependent on the basal body protein CEP19, but its entry into cilia is not necessary for causing BBS-associated ciliary defects. These observations suggest that GTP-bound RABL2 is likely to be required for recruitment of the IFT-B complex to the ciliary base, where it is replaced with IFT25-IFT27.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.